If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x+236=0
a = 1; b = 32; c = +236;
Δ = b2-4ac
Δ = 322-4·1·236
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{5}}{2*1}=\frac{-32-4\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{5}}{2*1}=\frac{-32+4\sqrt{5}}{2} $
| 0=x^2+32x+236 | | 4(n-2)+5n=19 | | 11f(6.40+4.80)=128.15 | | –20y=4)+8y+216 | | 3.5=1/2(x-1.5) | | 4.56=0.6t | | 8y=11/7 | | 5e+e=5e+8 | | 8d+3D+5d+5d+4d=50 | | n/5=125 | | 4(3x-2)=40-8x | | 4.5z-6.23=6.7z-1.17 | | y/4=16.1 | | 3x13+2=41 | | f-9=9+10-3f | | 3x-(29-9x)=-33 | | 1/9+2(t/18+4)=10 | | 180=(7x+8)+(4x+11)+(12x+7) | | 3x+13+6x-3=5x+17 | | -9.84-8.7q=-4.8q+7.71 | | 5x+17+6x-3=3x+13 | | 3x+13+5x+17=6x-3 | | 10v+2-10v=-v+8 | | a÷10=5 | | c-18.2=9.3 | | 4×-5y=8 | | 14w-w²/14=84 | | -8w+8=-4w+4 | | -1(2x-3)=5 | | y=75(1)+50 | | 180=x+(4x)+(5x-14) | | 3(2r+5)=16 |